Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans.
نویسندگان
چکیده
Curcumin (CUR) shows antifungal activity against a range of pathogenic fungi, including Candida albicans. The reported mechanisms of action of CUR include reactive oxygen species (ROS) generation, defects in the ergosterol biosynthesis pathway, decrease in hyphal development, and modulation of multidrug efflux pumps. Reportedly, each of these pathways is independently linked to the cell wall machinery in C. albicans, but surprisingly, CUR has not been previously implicated in cell wall damage. In the present study, we performed transcriptional profiling to identify the yet-unidentified targets of CUR in C. albicans. We found that, among 348 CUR-affected genes, 51 were upregulated and 297 were downregulated. Interestingly, most of the cell wall integrity pathway genes were downregulated. The possibility of the cell wall playing a critical role in the mechanism of CUR required further validation; therefore, we performed specific experiments to establish if there was any link between the two. The fractional inhibitory concentration index values of 0.24 to 0.37 show that CUR interacts synergistically with cell wall-perturbing (CWP) agents (caspofungin, calcofluor white, Congo red, and SDS). Furthermore, we could observe cell wall damage and membrane permeabilization by CUR alone, as well as synergistically with CWP agents. We also found hypersusceptibility in calcineurin and mitogen-activated protein (MAP) kinase pathway mutants against CUR, which confirmed that CUR also targets cell wall biosynthesis in C. albicans. Together, these data provide strong evidence that CUR disrupts cell wall integrity in C. albicans. This new information on the mechanistic action of CUR could be employed in improving treatment strategies and in combinatorial drug therapy.
منابع مشابه
KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata
The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glu...
متن کاملSesamol: A Natural Phenolic Compound with Promising Anticandidal Potential
We investigated the antifungal effects of sesamol (Ses), a natural phenolic compound, and exemplified that it could be mediated through disruption of calcineurin signaling pathway in C. albicans, a human fungal pathogen. The repertoire of antifungal activity not only was limited to C. albicans and its six clinical isolates tested but also was against non-albicans species of Candida. Interesting...
متن کاملPKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a sc...
متن کاملCalcineurin Is Required for Pseudohyphal Growth, Virulence, and Drug Resistance in Candida lusitaniae
Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of...
متن کاملAnticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida albicans
This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 58 1 شماره
صفحات -
تاریخ انتشار 2014